RAMAKRISHNA MISSION VIVEKANANDA CENTENARY COLLEGE, RAHARA, KOLKATA Undergraduate Admission Test: Chemistry Honours

Full Marks : 75

Time: 1 hour

- 1. The energy of an electron in the 3^{rd} orbit of hydrogen atom is "- E". The energy of an electron in the first orbit will be:
 - (a) 3E
 - (b) E/3
 - (c) E/9
 - (d) 9E
- 2. The root mean square velocity of hydrogen is $\sqrt{7}$ times the root mean square velocity of nitrogen. If T is the temperature of the gas in absolute scale, which of the following is true?
 - (a) $T_{N2} = T_{H2}$
 - (b) $T_{H2} = (\sqrt{7})T_{N2}$
 - (c) $T_{N2} = 2 \times T_{H2}$
 - (d) $T_{N2} = (\sqrt{7}) T_{H2}$
- 3. The coefficient of thermal expansion (α) is defined as, $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P}$. For an ideal gas, α is

equal to

- (a)
- (b) P

Т

- (c) 1/P
- (d) 1/T

 $\Delta H_1^{o} = -x kJ$ Given that, $C + O_2 \rightarrow CO_2$ 4. $\Delta H_2^{o} = -y kJ$ $2CO + O_2 \rightarrow 2CO_2$ The enthalpy of formation (in kJ per mole) of CO will be, (y - 2x)/2(a) (b) (2x - y)(y-2x)(c) (2x - y)/2(d)

5. For the reaction, $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$, what is the value of ΔH ?

- (a) $\Delta U + RT$ (b) $\Delta U + 2RT$
- (c) $\Delta U RT$
- (d) $\Delta U 2RT$

 $N_2 + 3 H_2 \rightleftharpoons 2 NH_3$ (equilibrium constant = K_1) 6. $N_2 + O_2 \leftrightarrows 2 NO$ (equilibrium constant = K_2) $H_2 + \frac{1}{2}O_2 \leftrightarrows H_2O$ (equilibrium constant = K_3) The equilibrium constant of the following reaction: $2NH_3 + 5/2 O_2 \rightleftharpoons 2 NO + 3 H_2O$, in terms of K₁, K₂ and K₃ is $K_1K_2K_3$ (a) $(K_1K_2)/K_3$ (b) $(K_1K_3^2)/K_2$ (c) $(K_2K_3^3)/K_1$ (d) 2 mole of N₂ is mixed with 6 mole of H₂ in a closed vessel of 1 litre capacity at a certain 7.

- temperature. If 50% of N₂ is converted into NH₃ at equilibrium, the value of K_C for the reaction, N₂ (g) + 3 H₂ (g) \leftrightarrows 2 NH₃ (g), is
 - (a) 4/27
 - (b) 9
 - (c) 27
 - (d) 1/27
- 8. Relationship between atomic radius (r) and the edge length (a) of a body centred cubic unit cell is,
 - (a) r = a/2
 - (b) $r = \sqrt{a}/\sqrt{2}$
 - (c) $r = (\sqrt{3})a/4$
 - (d) r = 3a/2
- 9. Nitration of benzene with mixed acid is a
 - (a) single step reaction
 - (b) two step reaction of which the second step is slower
 - (c) two step reaction of which the first step is slower
 - (d) two step reaction involving an anionic σ complex
- **10.** The following compound is named as

- (a) (2R, 3E)-pent-3-en-2-ol
- (b) (2*S*,3*E*)-pent-3-en-2-ol
- (c) (2*R*,3*Z*)-pent-3-en-2-ol
- (d) (2E, 4R)-pent-2-en-4-ol

11. Correct order of reactivity towards electrophilic substitution of the following compounds is

12. Identify 'A' from the following options-

$$Me_2C=NNH_2 \xrightarrow{EtONa, 180 \circ C} A$$

- (a) MeCH₂Me
- (b) Me₂C=NH
- (c) Me₂C(OEt)NH₂
- (d) Me₂CHNH₂
- 13. 2-Pentanone and 3-pentanone can be distinguished by -
 - (a) Ammoniacal cuprous chloride
 - (b) DNP solution
 - (c) NaOH $/I_2$
 - (d) Fehling's solution.
- 14. Which of the following compounds can undergo aldol condensation?
 - i. Acetone ii. Formaldehyde iii. Propanal iv. Benzaldehyde
 - (a) i, iv
 - (b) i, iii (c) i, ii (d) ii, iv
- **15.** *A*
 - Arrange the following compounds according to increasing boiling point.

i. n-pentane iii. n-pentanol iv. sodium n-pentoxide

(a) i < ii < iii < iv
(b) iv < ii < iii < iii < i
(c) ii < i < iii < iv
(d) iii < iv < ii < i

16. Arrange the following compounds according to increasing acidic strength.

i. p-nitrophenol ii. p-cresol iii. phenol iv. benzoic acid

(a) ii < iii < i < iv(b) iv < ii < iii < i(c) ii < i < iii < iv

(d) iii < iv < ii < i

17. Among Li, Na, Al and Ba which one has the highest reducing property:

- (a) Li
- (b) Na
- (c) Al
- (d) Ba

18.

Among F₂, O₂, Cl₂ and KMnO₄ which one has the highest oxidizing property:

- (a) O₂
- (b) F₂
- (c) Cl_2
- (d) KMnO₄
- 19. Aqueous solution of a colorless crystalline solid A gives white precipitate (B) when treated with dilute NaOH solution. The precipitate readily dissolves in excess of the reagent, forming C, to give a colorless solution. This colorless solution is further treated with dilute CH₃COOH and H_2S is passed through it subsequently. A white precipitate (**D**) is obtained again. Identify **A** and **D**.

(a)
$$A = MgSO_4.7H_2O; D = MgS$$

(b)
$$A = BaSO_4$$
; $D = BaS$

(c) $A = ZnSO_4.7H_2O$; D = ZnS

(d) $A = Al_2(SO_4)_3.16H_2O; D = Al_2S_3$

20.

Identify the value of x_1 , x_2 , x_3 and x_4 for the following redox reaction.

$$Cr_2O_7^{2-} + x_1 Fe^{2+} + x_2 H^+ = 2Cr^{3+} + x_3 Fe^{3+} + x_4 H_2O$$
(a) $x_1 = 3$, $x_2 = 12$, $x_3 = 6$, $x_4 = 6$
(b) $x_1 = 6$, $x_2 = 14$, $x_3 = 6$, $x_4 = 7$
(c) $x_1 = 6$, $x_2 = 12$, $x_3 = 3$, $x_4 = 6$
(d) $x_1 = 3$, $x_2 = 14$, $x_3 = 3$, $x_4 = 7$

- **21.** 8 g of a radioactive substance is reduced to 0.5 g in 1 hour. What is the half-life period $(t_{1/2})$ of the substance?
 - (a) 15 minutes
 - (b) 10 minutes
 - (c) 45 minutes
 - (d) 30 minutes

22. ${}^{235}U_{92} + {}^{1}n_0 \rightarrow {}^{146}Ba_{56} + \dots + 3 {}^{1}n_0.$

For the above reaction, what will be the missing element?

- (a) ${}^{87}\text{Ge}_{32}$
- (b) ⁸⁹Br₃₅
- (c) 87 Kr₃₆
- (d) $^{89}Br_{35}$.

23. What is the normality of a 0.05 M solution of H_3PO_4 ?

- (a) 0.05
- (b) 0.1
- (c) 0.15
- (d) none of them
- 24. The standard reduction potentials of few systems are given below:

 $\begin{array}{lll} Cu^{+} + e^{-} \rightarrow Cu(s) & E^{o} = +0.52V \\ 2H^{+} + 2e^{-} \rightarrow H_{2}(g) & E^{o} = 0V \\ Pb^{2+} + 2e^{-} \rightarrow Pb(s) & E^{o} = -0.13V \\ Cr^{3+} + e^{-} \rightarrow Cr^{2+} & E^{o} = -0.41V \end{array}$

Which of the following reaction would be expected to occur?

Which one of the following does not follow the Lewis octet rule?

(a) $2Cu(s) + Pb^{2+} \rightarrow 2Cu^{+} + Pb(s)$ (b) $Pb^{2+} + H_2(g) \rightarrow Pb(s) + 2H^{+}$ (c) $2Cr^{2+} + Pb^{2+} \rightarrow Pb(s) + 2Cr^{3+}$ (d) $Pb(s) + 2Cr^{3+} \rightarrow 2Cr^{2+} + Pb^{2+}$

25.

(a) NO₃⁻

- (b) NO
- (c) CO₂
- (d) BH_4^-