(The symbols have their usual meanings)

1. The value of $\lim _{x \rightarrow \infty} x \cos \left(\frac{\pi}{4 x}\right) \sin \left(\frac{\pi}{4 x}\right)$ is
a. $\frac{\pi}{2}$
b. $\frac{\pi}{4}$
c. 1
d. π
2. The sum of infinite series $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\infty$ is
a) $\frac{1}{3}$
b) 3
c) $\frac{1}{4}$
d) ∞
3. The function $f(x)=\max \{1-x, 1+x, 2\}, x \in(-\infty, \infty)$ is
a) Differentiable at all points
b) Differentiable at all points at $x=1$ and $x=-1$.
c) at all points except at $x=1$ and $x=-1$, where it is discontinuous
d) None of these.
4. $(\sqrt{3}+1)^{4}+(\sqrt{3}-1)^{4}$ is equal to
a) A rational number
b) An irrational number
c) A transcendental number
d) None of the above
5. If $f(x)=\left\{\begin{array}{ll}\frac{\sin [x]}{[x]}, & \text { for }[x] \neq 0 \\ 0, & \text { for }[x]=0\end{array}\right.$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, then $\lim _{x \rightarrow 0} f(x)$ equals
a) 1
b) 0
c) -1
d) doesn't exist
6. The function $2 \tan ^{3} x-3 \tan ^{2} x+12 \tan x+3, x \in\left(0, \frac{\pi}{2}\right)$ is
a) Increasing
b) Decreasing
c) Increasing in $\left(0, \frac{\pi}{4}\right)$ and decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
d) None of these
7. The function $y=x-\cot ^{-1} x-\log \left(x+\sqrt{x^{2}+1}\right)$ is increasing on
a) $(-\infty, 0)$
b) $(-\infty, \infty)$
c) $(0, \infty)$
d) $\mathbf{R}-\{0\}$
8. If $2 a+3 b+6 c=0$, then equation $a x^{2}+b x+c=0$ has roots in the interval
a) $(0,1)$
b) $(2,3)$
c) $(1,2)$
d) $(0,2)$
9. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$, then $x^{3}+y^{3}+z^{3}$ is equal to
a) -3
b) 3
c) 0
d) None of these
10. If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}, \cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{3}$, then the number of ordered pairs (x, y) is
a) 0
b) 1
c) 2
d) None of these
11. If $A=2 \tan ^{-1}(2 \sqrt{2}-1)$ and $B=3 \sin ^{-1}(1 / 3)+\sin ^{-1}(3 / 5)$, then
a) $A=B$
b) $A<B$
c) $A>B$
d) None of these
12. $\log _{\sqrt{3}} x+\log _{\sqrt[4]{3}} x+\log _{\sqrt[9]{3}} x+\ldots+\log _{\sqrt[{1 \sqrt{3}}]{ }} x=36$ gives
a) $x=3$
b) $x=4 \sqrt{3}$
c) $x=9$
d) $x=\sqrt{3}$
13. If coefficient of $x^{2} y^{3} z^{4}$ in $(x+y+z)^{n}$ is A, then coefficient of $x^{4} y^{4} z$ is
a) 2 A
b) $\frac{n A}{2}$
c) $\frac{A}{2}$
d) None of these
14. If the second, third and fourth terms in the expression of $(a+b)^{n}$ are 135, 39 and $10 / 3$ respectively, then
a) $a=3$
b) $b=1 / 3$
c) $n=5$
d) All the above
15. $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, then
a) $|\vec{a}|=1,|\vec{b}|=|\vec{c}|$
b) $|\vec{c}|=1,|\vec{a}|=1$
c) $|\vec{b}|=2,|\vec{b}|=2|\vec{a}|$
d) $|\vec{b}|=1,|\vec{b}|=|\vec{a}|$
16. The value of derivative of $f(x)=|x-1|+|x-3|$ at $x=2$ is
a) -2
b) 0
c) 2
d) Not defined
17. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has
a) Exactly one real root
b) Exactly four real roots
c) Infinite number of real roots
d) No real roots
18. If $z^{2}+z+1=0$, where z is a complex number, the value of $\sum_{r=1}^{2022}\left(z^{r}+\frac{1}{z^{r}}\right)^{2}$ is
a) 2022
b) 4044
c) 3033
d) 1011
19. The total number of integral solutions of $x y z=24$ is
a) 120
b) 90
c) 36
d) 30
20. The remainder, if $1+2+2^{2}+2^{3}+\cdots+2^{2021}$ is divided by 5 , is
a) 0
b) 1
c) 2
d) 3
21. If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and A adj $\mathrm{A}=A A^{T}$, then $5 \mathrm{a}+\mathrm{b}$ is equal to
a) 13
b) 5
c) 4
d) -1
22. If p is the length of the perpendicular drawn from the origin to any normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, then the maximum value of p is
a) 5
b) 4
c) 2
d) 1
23. If $f(x)$ satisfies the relation $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ and $f(1)=5$, then the value of $\sum_{n=1}^{2022} f(n)$ is
a) 10110×2023
b) 10110×2022
c) 5055×2023
d) 5055×2022
24. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is such that $1 / 2 \leq f(t) \leq 1$, for $t \in[0,1]$ and $0 \leq$ $f(t) \leq 1 / 2$, for $t \in[1,2]$, then $g(2)$ lies
a) $[1 / 2,3 / 2]$
b) $[3 / 2,2]$
c) $[0,1 / 2]$
d) $[2,5 / 2]$
25. The probability that a man who is 52 years now is alive till he is 77 years is $\frac{1}{4}$ and the probability that a second man who is 63 years old now will be alive till he is 88 years is $\frac{3}{8}$. Find the probability that at least one of them is alive at the end of 25 years.
a) $\frac{3}{32}$
b) $\frac{15}{32}$
c) $\frac{17}{32}$
d) $\frac{5}{8}$
26. The value of $\lim _{m \rightarrow \infty}\left(\cos \frac{x}{m}\right)^{m}$ is
a) 1
b) e
c) e^{-1}
d) None of these
27. The value of $\left(\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}\right)$ is
a) 1
b) 4
c) -1
d) -4
28. The area of the region bounded by the curve $y=x^{2}$ and $x=y^{2}$ is
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{1}{4}$
d) None of these
29. If α, β are roots of the equation $x^{2}+x+1=0$, then the equation whose roots are $\alpha^{2}+\beta^{2}$ and $\alpha^{-2}+\beta^{-2}$ will be
a) $x^{2}-x+1=0$
b) $x^{2}-x-1=0$
c) $x^{2}-2 x+1=0$
d) $(x+1)^{2}=0$
30. If $\left|z_{1}-2000\right|<2000,\left|z_{2}-2021\right|<2021,\left|z_{3}-2022\right|<2022$, then $\left|z_{1}+z_{2}+z_{3}\right|$
a) is greater than 6043
b) is less than 6043
c) is less than 12086
d) lies between 6043 and 12086
31. If the points whose position vectors be $-2 \hat{\imath}+\hat{\jmath}+\hat{k}, \hat{\imath}+\hat{\jmath}+\hat{k}, \hat{\jmath}-\hat{k}$ and $\alpha \hat{\jmath}+\hat{k}$ be coplanar, then the value of α is
a) 1
b) 2
c) -1
d) 0
32. If $\frac{x^{2}+1}{(2+x)(2-x)(x-1)}=\frac{a}{3(x-1)}+\frac{b}{4(2-x)}-\frac{c}{12(x+2)}$ and $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$, then $|A|$ is equal to
a) -34
b) 34
c) -24
d) -108
33. If $x=\sqrt{1+\sqrt{1+\sqrt{1+\cdots \text { to } \infty}}}$, then $x=$
a) $\frac{1+\sqrt{5}}{2}$
b) $\frac{1-2 \sqrt{5}}{2}$
c) $\frac{1+2 \sqrt{5}}{2}$
d) None of these
34. Which of the following function is differentiable at $x=0$?
a) $\quad \cos (|x|)+|x|$
b) $\quad \cos (|x|)-|x|$
c) $\quad \sin (|x|)+|x|$
d) $\quad \sin (|x|)-|x|$
35. If $I=\int_{-1}^{2}|x \sin \pi x| d x$, then I equals to
a) $\frac{1}{\pi}$
b) $\frac{2}{\pi}$
c) $\frac{4}{\pi}$
d) $\frac{5}{\pi}$
36. Let A be any $2 x 2$ matrix and B be its Adjoint. Then the determinant of the product of matrix $A B$ is
a. 1
b. $\operatorname{det} A$
c. $(\operatorname{det} A)^{2}$
d. None of the above
37. The modulus of $\sqrt{2 i}-\sqrt{-2 i}$ is
a) 2
b) $\sqrt{2}$
c) 0
d) $2 \sqrt{2}$
38. Let $|X|=4,|Y|=3$. The number of surjective maps from X to Y is
a) 24
b) 30
c) 36
d) None of the above
39. The maximum value of $\left(\frac{1}{x}\right)^{x} \quad(x>0)$ is
a) $\left(\frac{1}{e}\right)^{e}$
b) $\quad e^{e}$
c) $e^{\frac{1}{e}}$
d) None of these
40. The determinant of the matrix $A=\left(\begin{array}{ccc}x^{2}+x & x^{3}+x^{2} & x^{4}+x^{3} \\ x^{2} & x^{3} & x^{4} \\ x^{2}-x & x^{3}-x^{2} & x^{4}-x^{3}\end{array}\right), x \in R$ is
a) A polynomial in x of degree 7
b) 0
c) A polynomial of degree 9
d) None of these
41. $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets then
a) $P \subset Q$ and $Q-p \neq \varnothing$
b) $Q \nsubseteq P$
c) $P \not \subset Q$
d) $P=Q$
42. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos t^{2} d t}{x \sin x}$ is
a) $\frac{3}{2}$
b) 1
c) -1
d) None of these
43. If $P(A \cap B)=\frac{5}{13}$, then the value of $P\left(A^{c} \cup B^{c}\right)$ is
a) $\frac{4}{13}$
b) $\frac{5}{13}$
c) $\frac{7}{13}$
d) $\frac{8}{13}$
44. A determinant is chosen at random from the determinant of order 2 with elements 0 or 1 only. The probability that the determinant chosen is non-zero is
a) $3 / 16$
b) $3 / 8$
c) $1 / 4$
d) $1 / 8$
45. Let $a, b \in \mathbb{R}$ and $a \sqrt{a}+b \sqrt{b}=183$ and $b \sqrt{a}+a \sqrt{b}=182$ then $\frac{9}{5}(a+b)=$
a) 91
b) 61
c) 85
d) 73
46. If $f(x)$ is a polynomial satisfying $f(x) \cdot f(1 / x)=f(x)+f(1 / x)$ and $f(3)=28$.

Then $f(4)$ is
a) 63
b) 65
c) 67
d) 68
47. If $f(0)=0, f^{\prime}(0)=2$, then the derivative of $y=f(f(f(f(x))))$ at $x=0$ is
a) 2
b) 8
c) 4
d) 16
48. The integral $\int_{0}^{1.5}\left[x^{2}\right] d x$, where $[x]$ denotes the greatest integer function, equals
a) $2-\sqrt{2}$
b) $2+\sqrt{2}$
c) $1-\sqrt{2}$
d) 2
49. Projection of the vector $(-2 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})$ on the vector $\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ is
a) $\frac{2}{\sqrt{14}}$
b) $\frac{1}{\sqrt{14}}$
c) $\frac{3}{\sqrt{14}}$
d) None of these
50. In the following L.P.P.,

Minimize $z=-2 x+y$
Subject to $x+y \geq 6$,

$$
3 x+2 y \geq 16
$$

$$
y \leq 9
$$

and $\quad x, y \geq 0$, in which point the $z_{\text {min }}$ attain?
a) $(6,0)$
b) $(4,2)$
c) $(0,8)$
d) None of these

