RAMAKRISHNA MISSION VIVEKANANDA CENTENARY COLLEGE, RAHARA, KOLKATA Undergraduate Admission Test 2023: Physics Honours

Full Marks: 75

Time: 1 hour

- The velocity 'v' of a particle at time 't' is given by $v = at + \frac{b}{t+c}$, the dimensions of (abc) 1. is
 - a)
 - $[L^2T^{-1}]$ b) $[LT^{-1}]$

 - c) $[LT^{-2}]$
 - d) [LT]
- 2. A particle is describing a motion on x - y plane such that its coordinates evolve with time (t) according to following relations: $x(t) = t \cos(t)$ and $y(t) = t \sin(t)$. Trajectory of the particle is,
 - A circle a)
 - b) An ellipse
 - c) A spiral inward
 - d) A spiral outward
- 3. A bicycle is moving with speed of v as shown in the figure. Consider three points A, B and C on its rear wheel. If, linear velocity of these points are v_A , v_B and v_C respectively, then, which one of the following options is correct?
 - a) $v_A = v_B = v_C = v$
 - b) $v_C = -v_A = v$ and $v_B = 0$
 - c) $v_A = 0$ and $v_B = v_C/2 = v$
 - d) $v_B = v_C = -v_A = v$
- A hole is bored at a depth h on the side wall of a tank filled with water. The velocity of water 4. coming out of the hole is proportional to,
 - h a)
 - h^2 b)
 - c) \sqrt{h}
 - d) Independent of *h*
- 5. A bigger drop is broken into a large number of smaller drops. The process is
 - a) exo-thermic
 - b) endo-thermic
 - c) neither exo-thermic nor endo-thermic
 - cannot be said d)
- 6. Coefficients of linear expansion of an anisotropic solid along three rectangular axes in the solid are α_x , α_y and α_z . Coefficient of cubical expansion of the solid is

a)
$$\alpha_x + \alpha_y + \alpha_z$$

b)
$$\begin{bmatrix} \alpha_x \alpha_y \alpha_z \end{bmatrix}^{1/3} \\ \alpha_x + \alpha_y + \alpha_z \end{bmatrix}$$

$$\frac{3}{3}$$

None d)

- 7. Temperature of an ideal gas changes from 27°C to 927°C. The r.m.s. speed of its molecules becomes
 - a) Four times
 - b) Twice
 - c) Half
 - d) Thrice
- 8. Two identical metallic balls (A & B) in a room are heated up to increase their temperature by same amount so that their radii are increased by 1%. The ball A is resting on the floor and the ball B is hanging from the ceiling by a very thin wire so that the heat loss through their points of contact, in both the cases, is negligible. If the heat absorbed by the ball A and B are Q_A and Q_B , respectively then in principle:
 - a) $Q_A > Q_B$
 - b) $Q_A = Q_B$
 - c) $Q_A < Q_B$
 - d) Q_A and Q_B cannot be compared
- 9. A monatomic gas at a pressure P, having a volume V expands isothermally to a volume 2V and then adiabatically to a volume 16V. The final pressure of the gas is (take $\gamma = 5/3$):
 - a) 64P
 - b) 32P
 - c) P/64
 - d) 16P
- 10. The ratio of frequencies of two simple pendulums is 2:3, then ratio of their lengths is,
 - a) $\sqrt{2} : \sqrt{3}$
 - b) $\sqrt{3}:\sqrt{2}$
 - c) 9:4
 - d) 4:9
- 11. The respective numbers of the significant figures for the numbers 28.028, 0.0004 and $1.2*10^{-3}$ are:
 - a) 5,1,2
 - b) 5,1,3
 - c) 4,4,2
 - d) 5,5,2
- 12. The equation of a progressive wave is given by $y = 15\cos(660\pi t 0.02\pi x)$ cm. The frequency of the wave is
 - a) 330 Hz
 - b) 342 Hz
 - c) 365 Hz
 - d) 660 Hz
- **13.** Two light waves whose intensities are 9:16 are made to interfere. The ratio of maximum and minimum intensities in the interference pattern is
 - a) 49:16
 - b) 49:1
 - c) 7:1
 - d) 4:3

- 14. A capacitor is charged with a battery and energy stored is U. After disconnecting the battery another capacitor of the same capacity is connected in parallel with it. The energy stored in each capacitor is,
 - a) *U*/2
 - b) *U*/4
 - c) 2U
 - d) 4*U*

15. The force of repulsion between two electrons at a certain distance is *F*. The force between two protons separated by the same distance is $(m_p = 1836m_e)$

- a) 2*F*
- b) *F*
- c) 1836*F*
- d) *F*/1836

16. A wire of uniform cross-section and resistance R is cut into ten equal pieces. If two such pieces are connected in parallel then equivalent resistance will be

- a) R/5
- b) *R*/10
- c) *R*/20
- d) 2*R*

17. The magnetic field at a distance r from a straight long wire carrying current I is 0.4T. The magnetic field at a distance 2r is

- a) 0.2*T*
- b) 0.1*T*
- c) 0.05*T*
- d) 0.4*T*
- **18.** What is the direction of the magnetic field inside a solenoid when an electric current flows through it,
 - a) Along the axis of the solenoid
 - b) Anti-clockwise
 - c) Alternating direction
 - d) No magnetic field is produced inside a solenoid
- **19.** According to Ampere's circuital law, the magnetic field produced by a current-carrying conductor is directly proportional to,
 - a) The length of the conductor
 - b) The current flowing through the conductor
 - c) The resistance of the conductor
 - d) The voltage applied to the conductor
- **20.** If the kinetic energy of a free electron doubles, it's de-Broglie wavelength changes by a factor,
 - a) 2
 - b) ½
 - c) √2
 - d) $1/\sqrt{2}$

- **21.** Sodium and Copper have work functions 2.3 *eV* and 4.5 *eV* respectively. Then the ratio of the wavelength is nearest to,
 - a) 1:2
 - b) 4:1
 - c) 2:1
 - d) 1:4
- 22. If radius of the ${}^{27}_{13}Al$ nucleus is estimated to be 3.6 *fermi* then the radius of ${}^{125}_{52}Te$ nucleus be nearly,
 - a) 8 fermi
 - b) 6 fermi
 - c) 5 fermi
 - d) 4 fermi
- **23.** If input voltage, $V_{in}=5 \sin (\omega t)$ where ω is the angular frequency then (Assume ideal diode approximation, i.e., cut-in voltage of the diode is 0V) :

- a) During positive half cycle voltage drop across the diode = V_{in}
- b) During negative half cycle voltage drop across the diode = 0 V
- c) During positive half cycle voltage drop across the resistance = 0 V
- d) During negative half cycle voltage drop across the diode = V_{in}
- 24. The equivalent resistance between *a* and *b* must be :

25. The key is closed at time t = 0. The current flowing through the capacitor 0.5 milliseconds after closing the key must be (capacitor is uncharged at t = 0) :

- a) is more than 5 mA but less than 10 mA
- b) is 0
- c) is 5 mA
- d) is less than 5 mA but greater than 0

.***